Monday, January 27, 2020

Introduction To Medicinal Plants Biology Essay

Introduction To Medicinal Plants Biology Essay About 250,000 higher plant species on earth, more than 80,000 species are reported to have at least some medicinal value and around 5000 species have specific therapeutic value. Herbs are staging a comeback and herbal renaissance is happening all over the globe. The herbal products today symbolize safety in compare to the synthetics that are considered as unsafe to human and environment. Even though herbs had been priced for their medicinal, flavoring and aromatic qualities for centuries, the synthetic products of the modern age surpassed their importance, for a while. However, the blind dependence on synthetics is over and people are returning to the herbals with hope of safety and security. Over three-quarters of the world population relies mainly on plants and plant extracts for health care. More than 30% of the entire plant species were used for medicinal purposes. (Joy, P.P., 2001) Herbals in world market: It is estimated that world market for plant derived drugs may account for about Rs.2, 00,000 crores. Presently, Indian contribution is less than Rs.2000 crores. The annual production of medicinal and aromatic plants raw material is worth about Rs.200 crores. This is likely to reach US $5 trillion by 2050. It has been estimated that in developed countries such as United States, plant drugs constitute as much as 25% of the total drugs, while in fast developing countries such as China and India, the contribution is as much as 80%. Thus, the economic importance of medicinal plants is much more to countries such as India than to rest of the world. (Joy, P.P., 2001) Biodiversity of herbals in India: India is one of the worlds 12 biodiversity centers with the presence of over 45000 different plant species. Indias diversity is UN compared due to the presence of 16 different agro-climatic zones, 10 vegetation zones, 25 biotic provinces and 426 biomes (habitats of specific species). Among these, about 15000-20000 plants have good medicinal value. However, only 7000-7500 species are used for their medicinal values by traditional communities. In India, drugs of plant origin have been used in traditional systems of medicines such as Unani and Ayurveda since ancient times. The Ayurveda system of medicine uses about 700 species, Unani 700, Siddha 600, Amchi 600 and modern medicine around 30 species. About 8,000 herbal remedies have been included in Ayurveda. The Rig-Veda (5000 BC) has recorded 67 medicinal plants, Yajurveda 81 species, Atharvaveda (4500-2500 BC) 290 species, Charak Samhita (700 BC) and Sushrut Samhita (200 BC) had described properties and uses of 1100 and 1270 species respectively, in compounding of drugs and these are still used in the classical formulations, in the Ayurvedic system of medicine. (Joy, P.P., 2001) Sources of medicinal drugs: The drugs are derived either from the whole plant or from different organs, like leaves, stem, bark, root, flower, seed, etc. Some drugs are prepared from excretory plant product such as gum, resins and latex. Plants, especially used in Ayurveda can provide biologically active molecules and lead structures for the development of modified derivatives with enhanced activity and /or reduced toxicity. Some important chemical intermediates needed for manufacturing the modern drugs are also obtained from plants (Eg. ÃŽÂ ²-ionone).The forest in India is the principal(diosgenin, solasodine) repository of large number of medicinal and aromatic plants, which are largely collected as raw materials for manufacture of drugs and perfumery products. The small fraction of flowering plants that have so far been investigated have yielded about 120 therapeutic agents of known structure from about 90 species of plants. Some of the useful plant drugs include vinblastine, vincristine, taxol, podophyllo toxin, camptothecin, digitoxigenin, gitoxigenin, digoxigenin, tubocurarine, morphine, codeine, aspirin, atropine, pilocarpine, capscicine, allicin, curcumin, artemisinin and ephedrine among others. (Joy, P.P., 2001) History of herbal medicine: Ayurveda, Siddha, Unani and Folk (tribal) medicines are the major systems of indigenous medicines. Among these systems, Ayurveda is most developed and widely practiced in India. Ayurveda dating back to 1500-800 BC has been an integral part of Indian culture. The term comes from the Sanskrit root Au (life) and Veda (knowledge). As the name implies it is not only the science of treatment of the ill but covers the whole gamut of happy human life involving the physical, metaphysical and the spiritual aspects. Ayurveda is gaining prominence as the natural system of health care all over the world. Today this system of medicine is being practiced in countries like Nepal, Bhutan, Sri Lanka, Bangladesh and Pakistan, while the traditional system of medicine in the other countries like Tibet, Mongolia and Thailand appear to be derived from Ayurveda. Phytomedicines are also being used increasingly in Western Europe. Recently the US Government has established the Office of Alternative Medicine at the National Institute of Health at Bethesda and its support to alternative medicine includes basic and applied research in traditional systems of medicines such as Chinese, Ayurvedic. (Joy, P.P., 2001) Disadvantages: A major lacuna in Ayurveda is the lack of drug standardization, information and quality control. Most of the Ayurvedic medicines are in the form of crude extracts which are a mixture of several ingredients and the active principles when isolated individually fail to give desired activity. This implies that the activity of the extract is the synergistic effect of its various components. About 121 (45 tropical and 76 subtropical) major plant drugs have been identified for which no synthetic one is currently available. The scientific study of traditional medicines, derivation of drugs through bio prospecting and systematic conservation of the concerned medicinal plants is of great importance. Unfortunately, much of the ancient knowledge and many valuable plants are being lost at an alarming rate. Red Data Book of India has 427 entries of endangered species of which 28 are considered extinct, 124 endangered, 81 vulnerable, 100 rare and 34 insufficiently known species (Thomas, 1997).There are basically two scientific techniques of conservation of genetic diversity of these plants. They are the in situ and ex situ method of conservation. (Joy, P.P., 2001) In Situ conservation of medicinal plants: It is only in nature that plant diversity at the genetic, species and eco-system level can be conserved on long-term basis. (www.ggssc.net) It is necessary to conserve in distinct, representative bio geographic zones inter and intra specific genetic variation. Ex situ conservation of medicinal plants: A. Ethno-medicinal plant gardens: Creation of a network of regional and sub-regional ethno-medicinal plant gardens which should contain accessions of all the medicinal plants known to the various ethnic communities in different regions of India. This chain of gardens will act as regional repositories of our cultural and ethno medicinal history and embody the living traditions of our societys knowledge of medicinal plants. (www.ggssc.net) Current status: There are estimated to be around 50 such gardens in the country ranging from acre to 40 acres some of them were set up by an All India Health Network (AHN). More recently a network of 15 such gardens has been set up in 3 states of South India with the initiative of FRLHT. One of the gardens is located in TBGRI, (Tropical botanical garden research institute) Palode at Thiruvananthapuram. B. Gene banks: In India there is a large number of medicinal plant species are under various degrees of threat. The precautionary principles would suggest that an immediate and country-wide exercise be taken up to deposit seeds of wild medicinal plants with a first priority to known Red listed species and endemic species. Current status: The department of bio-technology, Government of India has recently taken the initiative to establish 3 gene banks in the country. One is with ICAR at the NBPGR (National Bureau of plant genetic Resources) Campus, the second is with CIMAPs, (Central Institute of Medicinal and Aromatic plants) Luck now and the third with TBFRI in Thiruvananthapuram. C. Nursery network: The most urgent and primary task in order to ensure immediate availability of plants and planting materials to various user groups is to promote a nationwide network of medicinal plant nurseries, which will multiply all the regional specific plants that are used in the current practice of traditional medicine. These nurseries should become the primary sources of supply of plants and seed material that can be subsequently multiplied by the various users. Current status: Planting material for 40 odd species of medicinal and aromatic plants is reportedly available in the ICAR and CSIR (CIMAP) network. In South India FRLHT (Foundation for Rural Revitalization of Local Health Tradition) has recently set up a network of 55 supply nurseries. D. Cultivation of medicinal plants: Figures projecting demand and trade in medicinal plant species globally indicate a step upward trend in the near future. One estimate puts the figure of world trade in medicinal plants and related products at US $ 5 trillion by A.D. 2050 (world bank report , 1996).The demand so far has been met mainly from wild sources. This cant go on for much longer; policy intervention is urgently needed to encourage and facilitate investments into commercial cultivation of medicinal plants. (Joy, P.P., 2001) Cultivation of medicinal plants is inversely linked to prevalence of easy and cheap collection from the wild, lack of regulation in trade, cornering of the profits from wild collection by a vast network of traders and middlemen and absence of industrys interest in providing buy-back guarantees to growers. Current status: In the Govt. sector agro-technology of 40 odd species has been developed by ICAR Agricultural University System and CSIR (CIMAOs RRL, Jammu and Jorhat). In recent years industries like Dabur, Zandu, Indian Herbs, Arya Vaidya Shala, and Arya Vaidya Pharmacy and others have made some symbolic efforts to initiate cultivation. Since1984 NABARD (National Bank of Agricultural and Rural Development) has formulated schemes for financing cultivation and processing of medicinal plants. E. Community based enterprises: The income generated by the traditional medicine industry benefits small section of the society. A strong case exists for promotion of community level enterprises for value addition to medicinal plants through simple, on site techniques like drying, cleaning, crushing, powdering, grading, packaging etc. This will also increase the stake of rural communities in conservation and change the skewed nature of income distribution of the industry. Current status: Three community based enterprises are known in south India, one in Gandhi gram Trust, (Dindigul), Premade development Society (Peer made) Kerala and the third by VGKK in B.R.Hills, Mysore. Importance of Herbal Medicines: Herbal medicines are prepared from a variety of plant material such as leaves, stems, roots, bark, etc. They usually contain many biologically active ingredients and are used primarily for treating mild or chronic ailments. (www.ggssc.net) Herbal remedies can also be purchased in the form of pills, capsules or powders, or in more concentrated liquid forms called extracts and tinctures. They can apply topically in creams or ointments, soaked into cloths and used as compresses, or applied directly to the skin as poultices. A combination therapy integrating ayurveda and allopathy whereby the side effects and undesirable reactions could be controlled can be thought of. Studies can show that the toxic effects of radiations and chemotherapy in cancer treatment could be reduced by Ayurvedic medications and similarly surgical wound healing could be accelerated by Ayurvedic medicines. Modern science and technology have an essential role to play in the process. Systems of Medicine: There are mainly 3 systems of medicine practiced in the world today. They are, Modern System of medicine or Allopathy: This system was developed in the Western countries. In this system drugs (tablets, capsules, injections, tonics etc.) are manufactured using synthetic chemicals and / or chemicals derived from natural products like plants, animals, minerals etc. This system also uses modern equipment for diagnosis, analysis, surgery etc. Medicines or drugs of this system is often criticized for its treatment of the symptoms rather than the cause of the disease, harmful side effects of certain drugs and for being out of reach of common / poor people due to the high cost of drugs and treatment. This system is used in all the countries of the world today. (www.ggssc.net) Alternative Medicine or Traditional System: Different countries of the world developed independently their own traditional systems of medicine using locally available materials like minerals and products of plants and animals. (www.ggssc.net) The World Health Organization (WHO) is giving importance to these alternate medicine systems to provide Primary Health Care to millions of people in the developing countries. Development of herbal medicine: China developed the Chinese system of medicine, which is practiced in China, Singapore, Taiwan, Japan and other countries. In India, Ayurveda (developed in North India), Siddha (developed in Tamil Nadu) and Nagarjuna (developed in Andhra Pradesh) systems of medicine were developed. Ayurveda is practiced in Sri Lanka, Pakistan and Bangladesh also. Herbo-mineral is another traditional system used in India and other neighbouring countries. Drugs (balms, oils, pills, tonics, paste etc) are manufactured and marketed in these systems. (Joy, P.P., 2001) Advantages of traditional medicine: Traditional systems of medicine continue to be widely practiced on many accounts. Population rise, inadequate supply of drugs, prohibitive cost of treatments, side effects of several allopathic drugs and development of resistance to currently used drugs for infectious diseases have led to increased emphasis on the use of plant materials as a source of medicines for a wide variety of human ailments. Folk Medicine or tribal medicine: The medicinal systems followed by various tribals of different countries are popularly known as folk or tribal medicine. In the system, the medicine man or the doctor of the tribe who has the knowledge of treating diseases, keeps this knowledge as a closely guarded secret and passes it to the next generation by word of mouth. No written texts on these systems are available and different tribes follow different time tested methods. The treatment is often associated with lengthy and mystic rituals, in addition to prescription of drugs (decoctions, pastes, powders, oils, ashed materials etc.). Generally speaking, folk medicine can also be regarded as a traditional system of medicine. The basic aim of all the above systems of medicine is to alleviate the sufferings of human beings and their domesticated animals. (www.ggssc.net) Other Systems of medicine: Yoga, Acupressure, Acupuncture, Reiki, Magneto therapy, Pyramid therapy, Flower therapy, Homeopathy, Nature Cure or Naturopathy etc. are some of the other systems of medicine practiced in different parts of the world today. Utilization of Herbal Plants: The utility of medicinal plants has four major segments they are, Medicinal plants utilized in indigenous or traditional systems of medicines (ISM) Ayurveda, Siddha, Unani and Homeopathy systems of medicines , OTC (over the country, non-prescription) items / products involving plant parts, extracts galenicals etc. , Essential oils , Phyto pharmaceuticals or plants used in modern systems of medicine. (www.ggssc.net) Medicinal plants used in Traditional Systems of Medicine: As its name implies, it is the part of tradition of each country which employs practices that have been handed down from generation to generation. An important feature of traditional therapy is the preference of practitioner for compound prescriptions over single substance/drug as it is being held that some constituents are effective only in the presence of others. This renders assessment of efficacy and eventually identification of active principles as required in international standards much difficult than for simple preparation. In India, earlier the medicines used in indigenous systems of medicines were generally prepared by the practicing physicians by themselves, but now this practice has been largely replaced by the establishment of organized indigenous drug industries. It is estimated that at present there are more than 1, 00,000 licensed registered practitioners of Ayurveda, Siddha, Unani medicine or Homeopathy. In fact reliable data on availability in different regions of country as well as supply and demand of medicinal plants used in production of indigenous medicines are not available. (www.ggssc.net) Plants-parts, extracts and galenicals of medicinal herbs: The direct utilization of plant material is not only a feature of ISM in the developing world but also in developed countries like USA, UK, Germany etc., the various herbal formulations are sold on health food shops. Preparation of decoctions, tinctures, galenicals and total extracts of plants also form a part of many pharmacopoeias of the world. The current trend of medicinal plants based drug industry is to procedure standard extracts of plants as raw material. (www.ggssc.net) Essential Oils from herbal plants: The essential oil industry was traditionally a cottage industry in India. Since 1947, a number of industrial companies have been established for large scale production of essential oils, oleoresins and perfumes. The essential oil from plants includes Ajowan oil, Eucalyptus oil, Geranium oil, Lavender oil, Palmarosa oil, Patchouli oil, Rose oil, Sandalwood oil, Turpentine oil and Vetiver oil. Phyto-pharmaceuticals of medicinal plants: During the past decades, bulk production of plant based drugs has become an important segment of Indian pharmaceutical industry. Some of the Phyto-pharmaceuticals which are produced in India at present include Morphine, codeine, papaverine (Papaver somniferum), quinine, quinidine, cinchonine and cinchonidine (Cinchona sp., C.calisaya, C. Hyoscine, hyoscyamine (Hyocyamus Niger and H. muticus), colchicine (Gloriosa superbad, Colchicum luteum and Iphigenia stellata), cephaeline and emetin (Cephalis ipacacuanha), sennosides A B (Cassia angustifolia and C. acutifolia), reserpine, rescinnamine, ajmalicine and ajmaline (Rauvolfia serpentina); vinblastine and vincristine, ajmalicine (raubacine) (Catharanthus roseus); guggul lipid (Commiphora wightii); taxol (Taxus baccata); artemisinin (Artemisai annua) etc. (www.ggssc.net) Table I: Represents about plants containing Therapeutic value (Joy, P.P., 2001) Plant groups Plant species Family Genera Species Thalophytes 230 I.Monocots A)Liliaceae 45 165 B)Orchidaceae 45 135 Bryophytes 39 II. Dicots A)Compositae 89 331 Pteridophytes 382 B)Leguminosae 91 313 Gymnospermae 55 C)Ranuculaceae 31 208 Angiospermae: a)Monocotyledones b) Dicotyledones 676 3495 D)Laminaceae 46 189 E)Rosaceae 28 146 F)Umbelliferae 34 123 G)Rubiaceae 35 118 H)Euphorbiaceae 30 104 Total 4877 I)Asclepiadaceae 29 101 CLASSIFICATION OF HERBAL PLANTS: They are classified according to the part used, habit, habitat, therapeutic value etc, besides the usual botanical classification.Based on Therapeutic value they are classified as follows. Anti malarial : Cinchona officinalis, Artemisia annua ,Anticancer : Catharanthus roseus, Taxus baccata ,Antiulcer : Azadirachta indica, Glycyrrhiza glabra , Antidiabetic : Catharanthus roseus, Momordica charantia , Anticholesterol : Allium sativum Anti inflammatory : Curcuma domestica, Desmodium gangeticum , Antiviral : Acacia catechu Antibacterial : Plumbago indica , Antifungal : Allium sativum , Antiprotozoal : Ailanthus sp., Cephaelis ipacacuanha , Antidiarrhoeal : Psidium guava, Curcuma domestica , Hypotensive : Coleus forskohlii, Alium sativum , Tranquilizing : Rauvolfia serpentina , Anaesthetic : Erythroxylum coca , Spasmolytic : Atropa belladona, Hyoscyamus niger , Diuretic : Phyllanthus niruri, Centella asiatica , Astringent : Piper betel, Abrus precatorius Anthelmentic : Quisqualis indica, Punica granatum , Cardio tonic : Digitalis sp., Thevetia sp. Antiallergic : Nandina domestica, Scutellaria baicalensis ,Hepatoprotective : Silybum marianum, Andrographis paniculata. (Joy, P.P., 2001) Safety of medicinal plants: The safety and effectiveness of alternative medicines have not be been scientifically proven and remains largely unknown. A number of herbs are thought to be likely to cause adverse effects. Furthermore, adulteration, inappropriate formulation, or lack of understanding of plant and drug interactions have led to adverse reactions that are sometimes life threatening or lethal. Proper double-blind clinical trials are needed to determine the safety and efficacy of each plant before they can be recommended for medical use. Although many consumers believe that herbal medicines are safe because they are natural, herbal medicines may interact with synthetic drugs causing toxicity to the patient, may have contamination that is a safety consideration, and herbal medicines, without proven efficacy, may be used to replace medicines that have a proven efficacy. (Joy, P.P., 2001) Eg: Ephedra has been known to have numerous side effects, including severe skin reactions, irritability, nervousness, dizziness, trembling, headache, insomnia, profuse perspiration, dehydration, itchy scalp and skin, vomiting, hyperthermia, irregular heartbeat, seizures, heart attack, stroke, or death. Poisonous plants which have limited medicinal effects are often not sold in material doses in the United States or are available only to trained practitioners, these include: Aconite, Arnica, Belladonna, Bryonia, Datura, Gelsemium, Henbane, Male Fern Phytolacca, Podophyllum andVeratrum. Furthermore, herbs such as Lobelia, Ephedra and Eonymus that cause nausea, sweating, and vomiting, have been traditionally prized for this action. Plants such as Comfrey and Petasites have specific toxicity due to hepatotoxic pyrrolizidine alkaloid content. There are other plant medicines which require caution or can interact with other medications, including St. Johns wort and grapefruit. (Phytotherapy , www.wikipedia.com) INTRODUCTION TO DIABETES MELLITUS In recent years, developed nations have witnessed an explosive increase in the prevalence of diabetes mellitus (DM) predominantly related to lifestyle changes and the resulting surge in obesity. The metabolic consequences of prolonged hyperglycemia and dyslipidemia, including accelerated atherosclerosis, chronic kidney disease, and blindness, pose an enormous burden on patients with diabetes mellitus and on the public health system. (Goodman Gilmans, 2006) In 1869, a German medical student, Paul Langerhans, noted that the pancreas contains two distinct groups of cells the acinar cells, which secrete digestive enzymes, and cells that are clustered in islands, or islets, which he suggested, served a second function. Direct evidence for this function came in 1889, when Minkowski and von Mering showed that pancreatectomized dogs exhibit a syndrome similar to diabetes mellitus in humans (Goodman Gilmans,2006) In the early 1900s, Gurg Zuelzer, an internist in Berlin, attempted to treat a dying diabetic patient with extracts of pancreas. Although the patient improved temporarily, he sank back into a coma and died when the supply of extract was exhausted. E.L. Scott, a student at the University of Chicago, made another early attempt to isolate an active principle in 1911. Using alcoholic extracts of the pancreas Scott treated several diabetic dogs with encouraging results; however, he lacked clear measures of control of blood glucose concentrations, Between 1916 and 1920, the Romanian physiologist Nicolas Paulesco found that injections of pancreatic extracts reduced urinary sugar and ketones in diabetic dogs. Although he published the results of his experiments, their significance was fully appreciated only years later. (Goodman Gilmans, 2006) Banting assumed that the islets secreted insulin but that the hormone was destroyed by proteolytic digestion prior to or during extraction. Together with Charles Best, he attempted to overcome the problem by ligating the pancreatic ducts. The acinar tissue degenerated, leaving the islets undisturbed; the remaining tissue then was extracted with ethanol and acid. Banting and Best thus obtained a pancreatic extract that decreased the concentration of blood glucose in diabetic dogs. (Goodman Gilmans, 2006) Insulin was purified and crystallized by Abel within a few years of its discovery. Sanger established the amino acid sequence of insulin in 1960, the protein was synthesized in 1963, and Hodgkin and coworkers elucidated insulins three-dimensional structure in 1972. Insulin was the hormone for which Yalow and Berson first developed the radioimmunoassay (Goodman Gilmans, 2006) Insulin regulation is achieved by the coordinated interplay of various nutrients, gastrointestinal hormones, pancreatic hormones, and autonomic neurotransmitters. Glucose, amino acids, fatty acids, and ketone bodies promote the secretion of insulin. The islets of Langerhans are richly innervated by both adrenergic and cholinergic nerves. Stimulation of a2 adrenergic receptors inhibits insulin secretion, whereas b2 adrenergic receptor agonists and vagal nerve stimulation enhance release. In general, any condition that activates the sympathetic branch of the autonomic nervous system (such as hypoxia, hypoglycemia, exercise, hypothermia, surgery, or severe burns) suppresses the secretion of insulin by stimulation of ÃŽÂ ±2-adrenergic receptors. Predictably, ÃŽÂ ±2 adrenergic receptor antagonists increase basal concentrations of insulin in plasma, and ÃŽÂ ²2 adrenergic receptor antagonists decrease them. The sugar is more effective in provoking insulin secretion when taken orall y than when administered intravenously because the ingestion of glucose (or food) induces the release of gastrointestinal hormones and stimulates vagal activity. Several gastrointestinal hormones promote the secretion of insulin. The most potent of these are gastrointestinal inhibitory peptide (GIP) and glucagon like peptide 1 (GLP-1). Insulin release also is stimulated by gastrin, secretin, Cholecystokinin, vasoactive intestinal peptide, gastrin-releasing peptide, and Enteroglucagon. (Goodman Gilmans, 2006) Distribution: Insulin circulates in blood as the free monomer, and its volume of distribution approximates the volume of extracellular fluid. Under fasting conditions, the pancreas secretes about 40 mg (1 unit) of insulin per hour into the portal vein to achieve a concentration of insulin in portal blood of 2 to 4 ng/ml (50 to 100 minutes/ml) and in the peripheral circulation of 0.5 ng/ml (12 minutes/ml) or about 0.1 nM. After ingestion of a meal, there is a rapid rise in the concentration of insulin in portal blood, followed by a parallel but smaller rise in the peripheral circulation. (Goodman Gilmans, 2006) Half Life: The half-life of insulin in plasma is about 5 to 6 minutes in normal subjects and patients with uncomplicated diabetes. This value may be increased in diabetics who develop anti-insulin antibodies. (Goodman Gilmans, 2006) Metabolism: Degradation of insulin occurs primarily in liver, kidney, and muscle. About 50% of the insulin that reaches the liver via the portal vein is destroyed and never reaches the general circulation. Insulin is filtered by the renal glomeruli and is reabsorbed by the tubules, which also degrade it. Severe impairment of renal function appears to affect the rate of disappearance of circulating insulin to a greater extent than does hepatic disease. Peripheral tissues such as fat also inactivate insulin, but this is of less significance quantitatively. The important target tissues for regulation of glucose homeostasis by insulin are liver, muscle, and fat, but insulin exerts potent regulatory effects on other cell types as well. Insulin is the primary hormone responsible for controlling the uptake, use, and storage of cellular nutrients. (Goodman Gilmans, 2006) Figure 1: Insulin release from ÃŽÂ ²-cell DIABETES MELLITUS: Diabetes mellitus (DM) consists of a group of syndromes characterized by hyperglycemia; altered metabolism of lipids, carbohydrates, and proteins; and an increased risk of complications from vascular disease. Most patients can be classified clinically as having either type 1 or type 2 DM. Criteria for the diagnosis of DM have been proposed by several medical organizations. The American Diabetes Association (ADA) criteria include symptoms of DM (e.g., polyuria, polydipsia, and unexplained weight loss) and a random plasma glucose concentration of greater than 200 mg/dl (11.1 mM), a fasting plasma glucose concentration of greater than 126 ml/dl (7 mM), or a plasma glucose concentration of greater than 200 mg/dl (11 mM) 2 hours after the ingestion of an oral glucose load In the United States, about 5% to 10% of all diabetic patients have type 1 DM, with an incidence of 18 per 100,000 inhabitants per year. A similar incidence is found in the United Kingdom. The incidence of type 1 DM in Europe varies with latitude. The highest rates occur in northern Europe (Finland, 43 per 100,000) and the lowest in the south (France and Italy, 8 per 100,000). The one exception to this rule is the small island of Sardinia, close to Italy, which has an incidence of 30 per 100,000. However, even the relatively low incidence rates of type 1 DM in southern Europe are far higher than the rates in Japan (1 per 100,000 inhabitants). There are more than 125 million persons with diabetes in the world today, and by 2010, this number is expected to approach 220 million. (Goodman Gilmans, 2006) Both type 1 and type 2 DM are increasing in frequency. The reason for the increase of type 1 DM is not known. The genetic basis for type 2 DM cannot change in such a short time; thus other contributing factors, including increasing age, obesity, sedentary lifestyle, and low birth weight, must account for this dramatic increase. In addition, type 2 DM is being diagnosed with remarkable frequency in preadolescents and adolescents. Up to 45% of newly diagnosed children and adolescents have type 2 DM. There are genetic and environmental components that affect the risk of developing either type 1 or type 2 DM Types: Diabetes can be divided into

Sunday, January 19, 2020

THE BUTTERFLY EFFECT Essay -- essays research papers

â€Å"Butterfly Effect† was perhaps one of the best films I have ever seen. I found it mysterious, interesting and fascinating. I wanted to write my reaction paper about â€Å"Butterfly Effect† because of the similarity to the film we saw in class called â€Å"Donnie Darko†. Both films investigate the issue of destiny thoroughly. Both film had a male character that has memories, dreams or black outs which make them at first confused. But later on, they realized the power they have in order to change their destiny. The main difference between those two films is their endings. While Donnie Darko has a bad ending, Butterfly effect ends more optimistic. We can say the end of the film in â€Å"butterfly effect† is left to the audience to interpret. Also Donnie Darko had the time travel once but the main character Evan had the time travel several times. Both films impressed me much and changed my view about destiny. But the reason I write about ‘’ B utterfly Effect† is that it was more realistic than â€Å"Donnie Darko†. (Rabbit) While watching the film my suspense level was always at the top. Some points were kept mystical and contradictory till the end of the film. At the first scenes in Film, it is a little bit hard to understand what is happening, but later on, the story can be understand easily. At the beginning we know just that the main character Evan is living with his mom and has a bad childhood with full of missing memories and black outs. He started to get psychological treatment right a... THE BUTTERFLY EFFECT Essay -- essays research papers â€Å"Butterfly Effect† was perhaps one of the best films I have ever seen. I found it mysterious, interesting and fascinating. I wanted to write my reaction paper about â€Å"Butterfly Effect† because of the similarity to the film we saw in class called â€Å"Donnie Darko†. Both films investigate the issue of destiny thoroughly. Both film had a male character that has memories, dreams or black outs which make them at first confused. But later on, they realized the power they have in order to change their destiny. The main difference between those two films is their endings. While Donnie Darko has a bad ending, Butterfly effect ends more optimistic. We can say the end of the film in â€Å"butterfly effect† is left to the audience to interpret. Also Donnie Darko had the time travel once but the main character Evan had the time travel several times. Both films impressed me much and changed my view about destiny. But the reason I write about ‘’ B utterfly Effect† is that it was more realistic than â€Å"Donnie Darko†. (Rabbit) While watching the film my suspense level was always at the top. Some points were kept mystical and contradictory till the end of the film. At the first scenes in Film, it is a little bit hard to understand what is happening, but later on, the story can be understand easily. At the beginning we know just that the main character Evan is living with his mom and has a bad childhood with full of missing memories and black outs. He started to get psychological treatment right a...

Saturday, January 11, 2020

Molar Mass of a Solid Essay

Abstract: The purpose of this experiment is to determine the molar mass of an unknown solid. The freezing point of a solvent (Cyclohexane) was determined, and compare to the freezing point of Cyclohexane with the addition of two different concentration of unknown solid. The pure substance of Cyclohexane has defined physical properties. However, when a solute is added these properties are determined by the amount of solute added, also known as colligative properties. The temperature of the freezing point was lowered when the solid was added and it decreased as the concentration of the solid increased. The molality of the solute was determined, which was then used to calculate the molar mass of the solid for both trials. An average of the molar mass of the unknown solid was calculated to be 286.87+1.796g/mol with a %RSD of 0.626%. The purpose of the experiment was to obtain the molar mass of an unknown solid. The molar mass is determined by dissolving the unknown compound into a pure liquid with defined physical properties, in this case Cyclohexane. When dissolving a solute, it forms a homogeneous solution, in which the solvent of the solution physical properties are not longer defined, but depends on the amount of solute added. Whenever a substance is dissolved in a solvent, the vapor pressure decreases. When the vapor pressure decreases, it also lowers the boiling and freezing point of the solvent and increases the osmotic pressure. These four properties are known as the colligative properties, the magnitude of the changes depends on the amount of solute dissolve; the changes are directly proportional to each other. The higher the solute concentration, the higher the changes of vapor pressure, therefore, a lower freezing point. It is hypothesized that the freezing point temperature will decreased, if there is a higher concentration of the solid added to the soution. Vapor pressure is th e  pressure exerted by a vapor when the vapor is in a state of dynamic equilibrium with its liquid. When a nonvolatile solute is dissolves in the solvent, solute molecules occupy a part of the surface area. This allows molecules into the vapor state, lowing the vapor pressure of the solvent. When the vapor pressure lowers, the boiling point elevates, due to the presence of the solute. Solute added to the solvent affects the freezing point, the energy of the solvent lowers to increase the magnitude of the intermolecular forces for the molecules to get together to form a solid. The colligative properties are useful for determining molar masses of unknown nonvolatile solute. At low concentrations of a nonvolatile solute, the freezing–point of depression of a solvent can be determine by Tf = Kf (solvent) -Tf (solution) = Kf m. Changes in freezing point Tf are directly proportional to the molality, m, of the solute in solution (molality, m = mol solute/ kg solvent). The freezing-point constant, Kf for Cyclohexane is 20ËšC †¢ k/mol, which is used to obtain the amount of moles of solute in the solution, which is inversely proportional to the change of freezing point Tf. The molal mass obtained is essential to obtain the molar mass of the unknown solid (solute). The molal mass shows the unknown amount of moles of solute are need it per kilogram of solvent. Acquiring the number of moles of solute and analyzing it with the grams of solute measured in the laboratory obtaining the molar mass of the unknown solute.i The cooling behavior of a solution different from a pure liquid solution when a solute it’s added. Te temperature at which the solution begins to freeze is lower than the pure solvent. The freezing point also lowers when there is a higher concentration of solute added to the solution. The molar mass of unknown solid can be determined by any of the colligative properties, the freezing point is not an exception and by knowing the mass of solute and temperature of the freezing point, the molar mass can be obtained. Discussion: The freezing point depression is a colligative property of solutions, which is based only on the amount of solute added and not the defined chemical and physical properties of the substance. The freezing point of Cyclohexane observed was 4.97ËšC, from the cooling curve (Figure 1). Freezing point values of Trial 1 and Trial 2 were collected, to compared to the freezing point of Cyclohexane and determine he depression of the solute. The unknown solid yielded a freezing depression of 3.64ËšC for trial 1, and 2.84ËšC for trial 2 (Figure 2 & 3). These values were compared to the original mass of unknown solute added to the Cyclohexane and the approximate molar mass of  the unknown solid. The molar mass that was calculated for trial 1 was 288.14-g/mol, while trial 2 was 285.60-g/mol (Table 3). The average of the molar mass was calculated, and the molar mass of the unknown solid observed was approximately 286.87-g/mol. When calculating the standard deviation was obtain only +1.796g/mol when comparing both trials to the mean. The values are apparently close up together, making them highly precise, however, is unknown if the values are accurate, the unknown solid actual molar mass still unknown. The relative standard deviation percent, obtained was 0.626% (Table 3); this measurement expresses precision of the data, the smaller RSD the greater the precision for the average value of the data. The %RSD, is extremely low, making it the results a tremendously precise data of the mean. However, there was a possible error that could have affected the results. The error occurred during recording the cooling temperature of trial 1, the ice melted and the test tube was removed to add more ice into the beaker. Also, while recording the temperature of the Cyclohexane upon addition of unknown solid, the sample was not stir and therefore the value could have probably been invalid. Constant stirring of solution would have assured an even mix of the solute particles and a more accurate freezing point. These small errors could have affected both trials creating a higher observed molar mass value for both trials. Conclusion: The experiment allowed for the determination of freezing point of Cyclohexane based on a logger pro software with calibrated thermometers to be approximately 4.97ËšC (Table 1). Freezing point depression was observed when two trials of different concentration of the unknown solid were added to the Cyclohexane. As the concentration of the unknown solid increased, the freezing point of the solution was also lowered (Table 2). As seen on Figure 4, when placing all three graphs it is visible, when solute is added a lower freezing point is observed. Using experimental measurements, the molar mass of the unknown solid was calculated to be 286.87+1.796g/mol. Based on the relative standard deviation percent (%RSD) of 0.626%, shows a highly precise measurements of unknown solid molar mass when compared to the mean values.

Friday, January 3, 2020

The Discourse Of Shakespeare s Hamlet ( Rough Draft )

The Discourse of Dance in Shakespeare’s Hamlet (Rough Draft) Alan Brissenden, a noted dance critic and Shakespearean scholar, asserts that â€Å"when Shakespeare uses dance it always contributes to plot, character, or imagery, and sometimes to all of these at one time (â€Å"Jacobean† 249). In the comedies, dance is used in the first few acts of the play to create an atmosphere of dramatic irony: dance, in its fundamental purpose in the Elizabethan and Jacobean theater was to create a sense of harmony and goodwill; when paired with the plot of a tragedy, dance stands in stark contrast to the discord of the final acts. Dance, therefore, makes a â€Å"dramatically relevant comment on the action to follow† (Shakespeare 75). Though extensively covered by academic discourse, little research has been conducted concerning the use of dance and dance imagery in Hamlet. Shakespeare uses the discourse of dance and clowning to define Hamlet’s character. Dance does not inform the action, but rather informs the inaction. It defin es Hamlet’s state of mind and his lack of desire to escape his melancholy. Dance is a means through which he criticizes others, criticism which draws these characters into his own madness. During the Early Modern period, dance had many uses; it was considered a form of medicine, a sign of religious exaltation, and a social necessity. Dance was a popular form of exercise and hygiene, keeping the humors in balance and promoting good health much like hunting, walking,Show MoreRelatedOrganisational Theory230255 Words   |  922 Pagesmanaging, organizing and reflecting on both formal and informal structures, and in this respect you will find this book timely, interesting and valuable. Peter Holdt Christensen, Associate Professor, Copenhagen Business School, Denmark McAuley et al.’s book is thought-provoking, witty and highly relevant for understanding contemporary organizational dilemmas. The book engages in an imaginative way with a wealth of organizational concepts and theories as well as provides insightful examples from theRead MoreStephen P. Robbins Timothy A. Judge (2011) Organizational Behaviour 15th Edition New Jersey: Prentice Hall393164 Words   |  15 73 Pagesand permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290. Many of the designations by manufacturersRead MoreDeveloping Management Skills404131 Words   |  1617 Pagesbuilt-in pretests and posttests, focus on what you need to learn and to review in order to succeed. Visit www.mymanagementlab.com to learn more. DEVELOPING MANAGEMENT SKILLS EIGHTH EDITION David A. Whetten BRIGHAM YOUNG UNIVERSITY Kim S. Cameron UNIVERSITY OF MICHIGAN Prentice Hall Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore